܄

大数据都有哪些局限性

【数据猿导读】 “每一场科学革命——从哥白尼的日心说模型到统计学和量子力学的兴起,从达尔文的进化和自然选择学说到基因理论——都是由于一件事,也只是由于一件事导致的,那就是数据的获取。”

大数据都有哪些局限性

“每一场科学革命——从哥白尼的日心说模型到统计学和量子力学的兴起,从达尔文的进化和自然选择学说到基因理论——都是由于一件事,也只是由于一件事导致的,那就是数据的获取。”

这是达纳法伯癌症研究所生物统计学和计算生物学教授约翰·夸肯布什昨天主题演讲中令人大开眼界的开头。他也是哈佛大学陈曾熙公共卫生学院的教授,拥有诸多学术成果。

毫无疑问,这一数据概念如今正推动着医疗卫生行业几乎各个方面的转型。夸肯布什在费城的MedCity Converge大会上指出,每家医院平均每年会产生大约665TB的数据,其中五分之四都是以图片、视频或医嘱的零散形式存在的。

不过严重限制人们利用这些信息的因素,不是“大数据”,而是“混乱数据”。

总体来看,在那些可能有海量有用数据可供发掘的地方,我们没有为那些真正希望使用这些数据的人提供方便之门。那些数据可能很难或很直接地获取,或是信息量不足,或是格式不对。还有可能数据不完整,或没有使用兼容的储存“标准”(我们似乎有数不清的互相不能兼容的标准)。或者在多维度的领域里,数据只记录了一个维度的信息。(他说:“生物系统是个复杂的自适应系统,拥有许多活动的部件,我们只是刚刚了解了一些皮毛

另外,这些数据并不能真正给出终端用户想要寻求的答案,这一点似乎是出人意料的普遍误解。换句话说,现有的数据没有目的性。

以人口统计数据为例,这是政府和学术机构常规收集的数据。夸肯布什表示:“统计学会使用人口数据,而医学研究也会依赖人口数据。但医疗护理却是通过个体数据推动的。所以当我们把(我们的数据研究)用于临床时,必须考虑如何让个体数据以有意义的格式储存而为人所用。”

他说,最终的目标应该是“利用不直观的数据,建立直观的图形化呈现”,从而让非数据科学家“不必坐在终端机前输入一系列晦涩的指令,就能对其展开研究”。

夸肯布什表示:“在你考虑让数据为人所用时,要做的就是建立接口,让人们能够接触并理解数据,用他们自己的想法使用数据。”

如果不这么做,我们所有的大数据就只是大型的二进制数据块和越来越大的数据服务器。

怎么阻止这种情况发生 夸肯布什坦率地说,将这些未经处理的数据变成可用数据的动机,不是提高医疗水平或让人们过得更好。驱动力将是所有科学中最重要的一种:经济学。如果我们真的打算有所进展,就必须证明,将这种数据和信息整合起来会有利可图。”


来源:36大数据

声明:数据猿尊重媒体行业规范,相关内容都会注明来源与作者;转载我们原创内容时,也请务必注明“来源:数据猿”与作者名称,否则将会受到数据猿追责。

刷新相关文章

旅游交通大数据——大众旅游时代的“富矿”
旅游交通大数据——大众旅游时代的“富矿”
#榜样的力量#疾控AI分析平台WDCIP——以科技力量贡献“大数据”智慧丨数据猿新冠战“疫”公益策划
#榜样的力量#疾控AI分析平台WDCIP——以科技力量贡献“大数...
张涵诚:大数据招商平台可推动地方供给侧改革
张涵诚:大数据招商平台可推动地方供给侧改革

我要评论

精品栏目

[2017/12/19]

大数据24小时

More>

[2017/12/18-22]

大数据周周看

More>

[2017/12/18-22]

大数据投融资

More>

[2017/12/18-22]

大咖周语录

More>

[2017/12/13-20]

大数据周聘汇

More>

[2017/12/12-19]

每周一本书

More>

返回顶部