܄

Hadoop工具如何形成SAP Hana的大数据平台

【数据猿导读】 自2008年以来,SAP Hana一直是领先的数据库管理系统之一。它比许多其他数据库管理解决方案能够更有效地处理数据,主要是因为它可以使用一些最先进的hadoop工具。

Hadoop工具如何形成SAP Hana的大数据平台

自2008年以来,SAP Hana一直是领先的数据库管理系统之一。它比许多其他数据库管理解决方案能够更有效地处理数据,主要是因为它可以使用一些最先进的hadoop工具。没有Hadoop,大多数SAP Hana数据库将是相对无用的。访问大多数数据集将是困难的,特别是在它们存储原始数据的时候。

为什么Hadoop是SAP Hana的骨干

迈克尔·考克斯和戴维·埃尔斯沃斯在1997年发表的“数据可视化应用控制需求调查”一文中提出了大数据这一术语。然而,大数据的应用直到最近才变得真正可行。

这个问题与存储容量无关。云计算的进步地指数级增加了人们存储数据的能力。然而,在存储数据后,访问数据是另一个问题。大多数数据提取工具可以从存储数TB数据的数据阵列中获取。据数据科学中心称,它将一些应用的数据可访问性提高了109%。

许多数据已经以非结构化格式存储,这可能难以提取,开发Hadoop来使流程更容易。

一些SAP Hana解决方案允许用户存储高达4.6TB的数据。然而,数据通常以不同的文件类型存储,这些文件类型很难以一致的格式提取和组织。Hadoop使得这个过程更加简单容易。

SAP Hana如何与Hadoop集成

将SAP Hana与Hadoop集成可以使访问远程数据集群变得更加容易。但是,设置是一个耗时的过程。第一步是设置和安装集群。框架可以通过几种方式构建:

·内部部署群集本地集群模型是处理需要少于50个节点的特定位置的项目的理想选择。

·基于云计算的群集。如果用户需要在大型地理位置进行协调,或者需要超过50个节点,那么基于云计算的群集就会更好。

确定正确的群集后,用户将需要创建一个测试环境。Cloudera Director是其中一个更好的模型。

执行几个测试模拟后,用户可以使用Hadoop来访问SAPHana智能数据。

使用Hadoop与SAP Hana有什么好处 

SAP Hana管理员使用Hadoop有很多原因。许多人选择在HANA上使用SAPUI5,因为它具有特殊的Hadoop基础设施。

成本效益

据戴尔EMC公司介绍,成本效益是整合Hadoop和SAP Hana的主要原因之一。其成本节省取决于存储的数据量,而不管数据是否是结构化的,非结构化,还是半结构化的。

“VMAX所有闪存阵列通常由各种存储组,SAP ANA生产和非生产数据库以及非SAP Hana工作负载组成,每个都具有自己的存储弦CR。因此,整个系统CR是各种底层存储组比率的组合。通过工作负载的正常组合,您可以看到大约2:1的系统CR。该比例可能会更高或更低,具体取决于工作负载组合。当内联压缩与其他VMAXAllFlash节省空间的功能(如虚拟配置,零空间回收和节省空间的快照)相结合时,可实现4:1的总体效率。

快速响应时间

响应时间,可扩展性和可靠性之间存在权衡。Hadoop优先考虑快速响应时间,因此它是管理员需要紧急访问数据的应用程序的理想选择。对于可扩展性更为关注的应用程序,Hadoop可能不太可取。

用户将需要首先概述其优先级。然而,由于大多数SAP Hana用户的优先权是大多数权宜之计,因此Hadoop通常是他们的解决方案。

批处理和挖掘原始数据

使用更原始的大数据提取工具难以获取原始数据。Hadoop使它更容易,这是SAP ana应用程序中广泛使用的主要原因之一。

实体Hadoop框架是SAP ana应用程序的关键

当用户设置SAP Hana数据环境时,几乎总是需要将其与Hadoop进行集成。否则访问非结构化数据将是非常困难的。


来源:搜狐科技

声明:数据猿尊重媒体行业规范,相关内容都会注明来源与作者;转载我们原创内容时,也请务必注明“来源:数据猿”与作者名称,否则将会受到数据猿追责。

刷新相关文章

旅游交通大数据——大众旅游时代的“富矿”
旅游交通大数据——大众旅游时代的“富矿”
#榜样的力量#疾控AI分析平台WDCIP——以科技力量贡献“大数据”智慧丨数据猿新冠战“疫”公益策划
#榜样的力量#疾控AI分析平台WDCIP——以科技力量贡献“大数...
张涵诚:大数据招商平台可推动地方供给侧改革
张涵诚:大数据招商平台可推动地方供给侧改革

我要评论

精品栏目

[2017/12/19]

大数据24小时

More>

[2017/12/18-22]

大数据周周看

More>

[2017/12/18-22]

大数据投融资

More>

[2017/12/18-22]

大咖周语录

More>

[2017/12/13-20]

大数据周聘汇

More>

[2017/12/12-19]

每周一本书

More>

返回顶部