܄

干货丨来看看数据人的必备技能

【数据猿导读】 根据数据应用的不同阶段,我将从数据底层到最后应用,来谈谈那些数据人的必备技能

干货丨来看看数据人的必备技能

前言:

谨以此文献给对数据有热情,想长期从事此行业的年轻人,希望对你们有所启发,并快速调整思路和方向,让自己的职业生涯有更好的发展。

根据数据应用的不同阶段,我将从数据底层到最后应用,来谈谈那些数据人的必备技能。

1、大数据平台

目前很火,数据源头,各种炫酷新技术,搭建Hadoop、Hive、Spark、Kylin、Druid、Beam~,前提是你要懂Java,很多平台都是用Java开发的。

目前很多企业都把数据采集下来了,对于传统的业务数据,用传统的数据是完全够用的,可是对于用户行为和点击行为这些数据或者很多非结构化的数据,文本、图像和文本类的,由于数据量太大,很多公司都不知道怎么进行存储。

这里面要解决的是实时、近实时和离线的大数据框架如何搭建,各数据流之间如何耦合和解耦,如何进行容灾、平台稳定、可用是需要重点考虑的。

我的感觉是:最近两三年中,这块人才还是很稀缺的,因为大数据概念炒作的这么厉害,很多企业都被忽悠说,我们也来开始进入大数据行业吧。进入的前提之一就是需要把数据存储下来,特别是很多用户行为方面的数据,对于业务的提升比较明显的,如果你能很好的刻画用户,那么对你的产品设计、市场营销、开发市场都是有帮助的。现阶段,很多公司都要做第一步:存储更多的数据。这也是这块人员流动性比较高的原因,都被高薪挖走了。

和传统的SQL不同的是,针对大数据量的非结构式数据,我们所想的就是:用最廉价的成本存储数据同时能够达到容灾、扩展性高、高性能、跨域,从目前来看,分布式已经被证明是个很好的一个方式。

另外,云端会是个很好的方向,不是每个公司都养得起这么多这么贵的大数据平台开发人员和运维人员OPS,从事这个行业的我们要有很好的危机意识,及时贡献出自己的价值,积极主动的学习新技术、否则就可能被淘汰了。

此外,花点钱把数据托管给云服务提供商是对于创业公司或者一些传统的企业来说是个很好的思路,这样能够最快速的确定数据对你的价值是什么,而不用采购这么多的服务器、雇佣这么多的运维人员和网站开发人员。

说了以上这些,主要是想给未来会从事这块的人或者想存储数据的公司一点方向。我自己不做这块,体会不深,大家看看就行。

这块工作最被吐槽的一点就是:Hive速度好慢,SQL查询好慢,集群怎么又挂掉了,hadoop版本升级后,怎么数据跑出来不对了等等。

因此,在这个领域内工作,需要有强大的攻坚能力,并且还需要有快速定位和解决bug的能力,因为有很多工具都是开源的。因为是开源的,所以你们懂得,各种坑爹,甚至出现无法向下兼容的情况,所以需要强大的Java开发能力。

如果想在这块做的很好,还需要有整个系统架构的设计能力、比较的强的抗压能力和解决问题的能力、资源收集的能力,可以打入开源社区,这样就可以随时follow最新的潮流和技术。

2、数据仓库-ETL

确实做仓库的人很辛苦,单单Oncall就会让人望而却步。有很多数据库工程师,晚上睡觉的时候经常被Oncall电话吵醒,因为数据流程出问题,需要第一时间去排查,是哪个数据源出问题,并且要立即解决,否则整个数据流程都会受到影响。

如果数据流程受到了影响,你就可能会被大领导一言不合叫到办公室说:我要的数据怎么还没有准备好,我的业务报表今天怎么没有发出来。

通过上面这个情景,我们可以知道:这是个很重要的岗位,因为数据流程很重要,决定了数据从源头杂乱无章的状况,通过ETL之后变成了整齐的数据,这些整齐一致性的数据可以让你很方便地把各业务的统计结果计算出来,并且能够统一口径。要不然就会变成有几个部门,就有几种统计结果,到时候A部门说业务增长了5%,B部门说业务涨了10%,OMG,到底信谁。

至少在以下几点上,我觉得数据仓库人员应该要做好:

a、数据字典的完整性,用的人都希望能够清晰的知道这个字段的逻辑是什么。字段要保持很好的一致性,不要同样一个字段在不同表里有不同的定义。

b、核心流程的稳定性,不要让每天订单主表能够使用的时间很不稳定,有的时候很早,有的时候要中午才出来,如果不稳定就会导致使用数据的人对你很没有信心。

c、仓库版本迭代不要过于频繁,要保持不同版本之间的兼容性。不要做好了仓库1.0,很快就把原来的推倒重来,变成了2.0。在数据仓库中需要考虑到延续性,主表的变动不要太频繁,否则使用的人会非常痛苦,好不容易才用习惯了1.0的表结构,没办法这么快进行切换。简单地说,要能向下兼容。

d、保持各业务逻辑的统一性,不要出现同样的业务逻辑,同一个组别的人统计出来的结果不同。原因在于共同的逻辑没有落地成通用的东西,所以导致每个人写法不同。这点其实需要特别注意。

针对以上,这个岗位的技能要求是:不要成为仅仅会写SQL的人,现在工具都很发达,如果你的技能很单一的话,那么可替代指数是非常高的,并且你自身也没有什么成就感。这里并不是说会写SQL的人很low,只是说应该多学一些技能,否则会很危险。

仓库人员应该要常常思考,如何进行架构设计是最合理的,你要考虑是否需要字段冗余、行存储还是列存储、字段如何扩展最有效,热数据和冷数据如何拆分等,所以需要有架构思维。

技能上,除了SQL熟练之外,还需要知道如何写Transform,MapReduce,因为有很多业务逻辑用SQL实现起来非常复杂,但是如果你会其他脚本语言,那么就能给你提供便利,让你的效率提升很多。另外好的仓库人员需要写Java或者Scala,通过写UDTF或者UDAF来提升你的效率是很有必要的。

数据仓库人员也应该常常考虑自动化和工具化方面的事情,需要很好的工具或者模块的抽象能力,动手实现自动化的工具来提高整个组织效能。针对经常碰到的数据倾斜问题,需要很快定位问题并进行优化。

说完了数据存储这块,接下来是数据应用的几个关键职位,在此之前,我想说数据应用的一个最关键的前提是:数据质量、数据质量、数据质量!!在每次阐述你的观点、分析结论或者用算法的时候,都需要先检查,源头数据正确性,否则任何结论都是伪命题。

3、数据可视化

这是个很炫的工作,最好是能懂点前端,比如js。数据可视化人员需要有很好的分析思维,不能为了炫技而忽视对业务的帮助程度。因为我对这个岗位客串的不多,所以没有特别深入的感悟,不过我觉得这个岗位需要有分析的能力,才能把可视化做好。

另外一方面来说,做数据应用的人都应该懂点数据可视化,要知道观点表达的素材顺序是:图片>表格>文字,一个能够用图片来阐述的机会千万别用文字来描述,因为这样更易于让别人理解。要知道,给大领导讲解事情的时候,需要把大领导设想成是个“数据白痴”,这样才能把一件事情说的比较生动。

4、数据分析师

现在对数据分析的需求是很大的,因为大家都想着说:数据有了,但是能做些什么呢?这就需要有数据分析师,对数据进行分析和挖掘,然后做数据应用。

对数据分析师吐槽最多的是:你分析出来的不就是正常的业务逻辑吗,还需要你分析什么?或者是你分析的结论不对,跟我们的业务逻辑不符合。特别是:ABTest的结果和当初设定的预期不相符合的时候,分析师会常常被拉过去说:分析一下,为什么我的AB实验结果不显著,里面肯定有原因的。

很多时候,宝宝的心里苦啊,你说这个转化率下降了,从数据上可以看出哪个细分渠道下降了,至于为什么客户不下单,我们得去用户去,很多时候,数据上也体现不出来为什么,只能告诉你现状是什么。

如果你一直在写分析报告,给结论中,持续周而复始,没有直接在业务中体现成绩的时候,数据分析师们该醒醒了,你该想想这个是你要的岗位吗?

对于数据分析师的定位:个人认为,成为优秀的数据分析师是非常难的,现在市面上也没有多少优秀的分析师。数据分析师的技能要求,除了会数据分析、提炼结论、洞察数据背后的原因之外,还需要了解业务,懂算法。

只有这样,当面对一个业务问题时,数据分析师们才可以针对问题抽丝剥茧,层层递进去解决问题,再根据定位的问题进行策略的应对,比如是先做上策略进行测试还是应用算法进行优化,用算法用在哪个场景上,能不能用算法来解决问题。

一个优秀的数据分析师,是个精通业务和算法的全能数据科学家,不是那个只会听从业务的需求而进行拉数据、做报表、只做分析的闲杂人等。我们都说分析要给出结论,优秀分析师的结论就是一个能解决问题的一揽子策略和应对措施,同时很多需求是分析师去主动发现并通过数据来挖掘出来的。

从上述描述中,可以看到对数据分析师的要求是:会写sql拉数据,精通业务、会数据洞察、精通算法,主动性强,要求还是很高的。

如果你一直只是忙于应付日常分析需求,热衷于写华丽的报告,那么你要记得,你很危险,因为会有一堆人在那里质疑你存在的价值,特别是小公司。因为数据人员的薪资是个不小的支出。

大部分不落地的分析都是伪分析,有一些探索性的可行性研究可以不考虑落地,但是其他的特定业务需求的分析都需要考虑落地,然后通过实践来反推你的作用,如此反复,才能慢慢的给你价值的肯定,同时提升你的分析技能,也只有这样才能证明你作为分析师、数据落地者的价值。

5、数据挖掘/算法

这块的话,经过这三年的摸爬滚打,感触蛮多的。体会比较深的吐槽主要有以下几点:

一个规则搞定了,还用什么算法。

你的准确率怎么这么低?!

你的准确率可以到99%吗?

你的推荐有价值吗?你不推荐客人也会下那个产品的订单的。

帮我做个大数据预测他想要什么?

很多时候,不同的场景对准确率的要求是不同的,所以在一定合理的场景下和业务进行据理力争是必要,不要害怕让业务吐槽,更多的时候管理好他们的预期。

有些场景下,推荐的价值在于『长期复购率』,所以不要每次都盯着ABTest的转化率来说事,让客人的费力度降低也是很有前途和前景的。一个智能的产品会让客人用起来爱不释手,虽然在这一次的转化中没有明显的差别,但是观察长期复购率才能体现价值。特别是要区分:高频和低频产品。频次比较低的产品就特别难体现出短期价值。

对于这个岗位的技能要求来说,没有要求你一定要从零开始实现所有的算法,现在有很多现成的算法包进行调用。最基本的要求是,你要知道每个场景会用到哪个算法,比如分类场景,常用的分类算法就有LR/RF/Xgboost/ET等等,此外,你还要知道每个算法的有效优化参数是什么、模型效果不好的时候怎么优化。还需要有算法的实现能力,语言方面可以用Scala/python/R/Java等。我们常说:工具不重要,重要的是你玩工具,不是工具玩你。

另外针对有监督式学习算法,算法工程师最好有很好的业务sense,这样在feature设计的时候才能更有针对性,设计的feature才有可能有很好的先验性。

6、深度学习(NLP,CNN,语音识别)

这块我没具体商用过,只是动手实践过。个人感觉商业化是重点吧,特别是大家都在观望说你的chatbot很有用啊,可是siri做了这么久,最后反响也一般。

现在客服机器人又很火,大家又在一通吐槽说,这个上下文理解的太差了,机器人的语义识别做的怎么这么差。谁做谁知道,对于中文的语义识别,难度比国外的难多了,因为中文的一种否定说法有太多种变体,你不知道我们会说哪种。

另外,常常有人吐槽说,你这个CNN这么复杂,我线上需要满足100ms内返回,搞的这么复杂,实时调用怎么整,肯定来不及了,最后只能考虑offline预测了。常常说这话的人,是不会自己写底层代码的,很多时候我觉得:不是你没有解决问题的办法,而是你没有去思考怎么解决问题,心智决定了你的产出。

整体来说,这块对个人的综合素质要求是很高的。如果你只是想简单利用现成的Model,提取中间层的特征,然后再套用其他的机器学习模型进行预测的话,倒也能很好的解决一些现实中的公司应用,比如yelp的图片分类。

不过,严格来说,这个不算是做深度学习的人,因为真正玩DL的人,是需要自己动手建模型,调参数,改symbol的,所以他们的编程能力是很强的,这点上,我一直都高山仰止。特别是一些创业公司,对于这个岗位的编程能力要求很高。如果你面试创业公司后没有下文了那就表示:你很优秀,但是不一定适合我们公司,因为我们要找的编程能力很强的人。

这块我不专业,所以就点到为止,不说太多。个人认为,在这块上需要有比较强的算法改造和优化能力,尽量的提高算法预测的速度,同时不断的提高算法的外延性提高精度,目前整个行业也都是朝着好的方向在发展。如果有很多人看到这块行业开出来的高工资,记得和招聘上的要求核对一下,自己哪块技能需要补充。这样你才能成为人中之凤。

对于未来,一片光明,对于未来,甚是期待,对于未来,一切可能。

做个总结:

以上说了这么多,唠叨了这么多,其实核心就是:如何用数据创造价值,如果你没有用数据创造价值的能力,那么就只能等着被数据淹没,被数据拍死在职场上,早早到达职业的天花板。

体现数据价值的层面上,越往数据应用层靠拢,对数据产生价值的要求就越高,从事这块领域的人要常常自省是否有好的商业Sense,毕竟在工业界,没人关心你是否比传统的baseline提高了一个百分点,他们关心的是你提高了一个百分点之后,对公司的价值是什么。

而越往底层那块,倒也没有强制要求和业绩绑定在一起,更多的是从流程上进行约定,对于这块的价值体现,主要从技术层面上的创新为主,你如果解决了现存架构的问题,那么你就可以成为一个大牛,所以多学学编程吧,别太约束自己,故步自封。


来源:36大数据

声明:数据猿尊重媒体行业规范,相关内容都会注明来源与作者;转载我们原创内容时,也请务必注明“来源:数据猿”与作者名称,否则将会受到数据猿追责。

刷新相关文章

#榜样的力量#寻找新冠战“疫”,中国数据智能产业先锋力量丨数据猿公益策划
#榜样的力量#寻找新冠战“疫”,中国数据智能产业先锋力量丨数...
数据智能 无限未来—2020世界人工智能大会云端峰会数据智能主题论坛顺利举办
数据智能 无限未来—2020世界人工智能大会云端峰会数据智能主题...
#榜样的力量#天玑数据大脑疫情风险感知预警平台“智疫通”丨数据猿新冠战“疫”公益策划
#榜样的力量#天玑数据大脑疫情风险感知预警平台“智疫通”丨数...

我要评论

精品栏目

[2017/12/19]

大数据24小时

More>

[2017/12/18-22]

大数据周周看

More>

[2017/12/18-22]

大数据投融资

More>

[2017/12/18-22]

大咖周语录

More>

[2017/12/13-20]

大数据周聘汇

More>

[2017/12/12-19]

每周一本书

More>

返回顶部